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Compressibility of Liquids: Theoretical Basis 
for a Century of Empiricism 
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We show how the successful empirical results of the past century for the 
compressibility of liquids can be obtained from a recent statistical-mechanical 
theory that includes dense fluids as well as low-density gases and vapors. The 
theory also shows to what extent the results for liquids can be extended to dense 
supercritical fluids and how they can be generalized to any number of dimensions. 
For simplicity only argon and a Lennard-Jones (12,6) fluid are examined in 
detail, but the results can probably be extended to real molecular fluids. 
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1. I N T R O D U C T I O N  

There  exists no general  s imple analy t ica l  equa t ion  of s tate for l iquids based  
on fundamen ta l  theory ,  a l though  m a n y  empir ica l  ones have been p r o p o s e d  
for prac t ica l  use [1 -3  ]. The  empir ica l  fo rmulas  can be classified into those 
tha t  t rea t  the bu lk  modu lus  ( rec iprocal  compress ib i l i ty )  as a p rope r  
der ivat ive and  those  tha t  represent  it by  its finite-difference analogues.  A 
successful equa t ion  val id  over  a wide range of pressure  can be expressed as 

1 _ 
~ p  T ~ L Op J r  \ e l n p J r  

where p is the pressure,  p is the densi ty,  B is the bu lk  modulus ,  and  •r is 
the i so thermal  compress ib i l i ty ,  

~cr B- V \ ~ p l r = p  ~pp r (2) 
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The dimensionless temperature-dependent coefficient C(T)  is referred to 
here as the Moelwyn-Hughes number, in recognition of his use of it to 
determine intermolecular-potential parameters, via a lattice-model theory 
of the liquid state [4-6]. Although Eq. (1) has been mainly used for highly 
compressed liquids and solids, it also holds for ideal gases with C ( T ) =  1. 

Integration of Eq. (1) can be carried out with either p or p as the 
independent variable. The first integrals are 

l 1 .=~ C ( p - p o )  (3) 
KT 

or  

~cT/~c~ (po/p ) c (4) 

o is the compressibility at the reference pressure Po and reference where ~c r 
density P0. The second integral is the p - V - T  equation of state, 

V._o0 = /9 = [1 + Ctc~ Po) ]  1/c (5) 
V P0 

where V0 is the reference volume. This form was derived by Murnaghan [7], 
starting from an expression for the bulk modulus of an elastic solid, and 
has been called the Murnaghan equation [2]. The third integrals give the 
Gibbs free energy as a function of either pressure or density and are easily 
found by straightforward integration [-6]. 

The linear relation between bulk modulus and pressure exemplified by 
Eq. (1) is essentially due to Tait [1-3] but was originally expressed in 
terms of an average or finite-difference modulus, B, now usually called the 
secant bulk modulus, 

~=_ V o ( P -  po) P -  Po (6) 
Vo - V 1 - Po/P 

This is a more convenient quantity than the differential modulus B, since 
differentiation of experimental data greatly amplifies errors. 

The purpose of this paper is to show how the successful empirical 
results follow from a statistical-mechanical theory that includes dense fluids 
as well as low-density gases and vapors [8]. This seems to be the first time 
that these results have been given a strong basis in statistical mechanics. It 
also shows to what extent they can be extended from compressed liquids 
to dense supercritical fluids. For simplicity we consider here only spherical 
particles with central-force interactions and test the results on computer 
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simulations of a Lennard-Jones (12,6) fluid and on argon. However, the 
arguments are not essentially changed for nonspherical molecules I-9], 
although of course many details are different. 

2. THEORY 
The crucial ingredients that have made possible a successful statistical- 

mechanical equation of state are two in number. The first is the recognition 
that the structure of simple dense fluids is determined largely by the 
repulsive intermolecular forces, so that a fluid of hard spheres can serve as 
a reference system on which to base perturbation theories. This is the basis 
of successful modern theories of liquids. A succinct review of the rather 
involved history of this view has been given by J. S. Rowlinson in Section 5.5 
of his Introductory Essay to the recent printing of an English translation 
of the Leiden thesis of van der Waals [10]. A statistical-mechanical theory 
based on this idea yields an equation of state of the following form [8]: 

P - 1 + B 2 ( T ) p  + ~ ( r ) p { g [ b ( r ) p ]  - 1} (7) 
p k T  

where p is the number (molar) density, k T  has its usual meaning, and 
g [ b ( T ) p ]  has the same mathematical form as the pair distribution 
function at contact for equivalent hard spheres (whose temperature- 
dependent effective diameter is determined by the true intermolecular 
potential). 

It should be emphasized that this equation of state is in fact a new 
result. Although related to them, it differs from modern liquid theories in 
that it is an analytic result, rather than a purely numerical one, and its 
three parameters depend only on the temperature. The parameters are 
related to the intermolecular pair potential u(r) by straightforward 
quadratures: 

B 2 ( T  ) = 2re fo 

O rm 

[1 - -  e u(r)/kr] r 2 d r  ( 8 )  

~(T) = 2~ Jo [ 1 - e -"~ r 2 dr (9) 

T d~ = 2re Io~ I1 - ( b ( T ) = a +  dT 

Here uo(r) is the repulsive part of u(r), 

~u(r) + g, 
Uo(r) = (0, 

(lo) 

r < r m 
(11) 

r > r m  
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where e is the depth of the potential well and r m is its minimum position. 
This is the Weeks-Chandler-Andersen [11] decomposition of u(r). The 
physical interpretation of these parameters is as follows: B2(T) is the 
second virial coefficient; c~(T) is the contribution to B2(T) from the inter- 
molecular repulsive forces and acts as a scaling factor for the "softness" of 
these forces; and b(T) corresponds to a van der Waals covolume for 
equivalent hard spheres [8]. 

The second crucial ingredient of the equation of state is the availability 
of an accurate simple approximation for the equation of state of a 
hard-sphere fluid, from which the mathematical form of g[b(T)p] can be 
found. Carnahan and Starling [12] found such an approximation by 
noticing some algebraic regularities in the known virial coefficients of hard 
spheres. Their result is virtually indistinguishable from computer simula- 
tions of hard-sphere fluids; possible reasons for this outstanding success 
have been advanced [13]. The form of g[b(T)p] found from the Carnahan- 
Starling equation of state is especially simple when written in terms of the 
variable r / -  lb(T)p [12, 13], 

1 -rt/2 
g(,1)- (1_,7) ~ (12) 

where ~/is interpreted to be the packing fraction (the fraction of space filled 
by particles) for the equivalent hard spheres. This expression for g(t/) is 
very accurate up to the freezing density but fails at the still higher densities 
that correspond to metastable compressed liquid. Other, more elaborate, 
expressions for g(tt) are available that are accurate at these higher densities 
[14, 15], but we do not need them here. 

On substituting Eq. (12) into Eq. (7), we obtain an explicit analytic 
form for the equation of state (we here drop the explicit notation for the 
temperature dependence of B2, ~, and b), 

p = I1 + - + (4(8 _- bP) jbP)] (13) 

The accuracy of this expression has previously been tested on computer 
simulations and on a number of selected real fluids over a wide range of 
densities [8], but little attention was paid to the regions of compressed 
liquid, which we now wish to examine. It is straightforward to evaluate the 
isothermal compressibility from Eq. (13), 

1 OP =pkT 1 +2(B2--~)p+32c~p (14) B = - - = p  
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Equations (13) and (14) constitute the fundamental theoretical relation 
between ~CT and pressure, expressed parametrically with the density as the 
parameter. It is not obvious that elimination of p between Eq. (13) and 
Eq. (14) will lead to a linear or nearly linear relation between 1/~cr and p 
below the critical temperature, as suggested by Eq. (3) in Section t. 
However, it is not necessary to eliminate p analytically in order to 
investigate this point; it is just as easy to carry out the elimination 
numerically, as described in the following section. 

A final comment is in order on the approximations contained in 
Eqs. (13) and (14). We have already mentioned the restriction to spherical 
particles with central-force interactions and the fact that these approxima- 
tions can be relaxed. A more serious assumption is that of pairwise 
additivity of the intermolecular forces, which enters primarily through 
Eq. (12) for g(t/). Many-body forces are still included in the got) appearing 
in the general form given by Eq. (7), but Eq. (12) involves pairwise 
additivity. 

3. NUMERICAL CALCULATIONS 

Given u(r), it is straightforward to calculate B2(T), ~(T), and b ( T )  
from Eqs. (8)-(10), and then to generate numerical values of 1/~CT from 
Eq. (14) and corresponding values of p from Eq. (13). We have carried out 
such calculations over a wide range of pressures and temperatures for fluids 
obeying a Lennard-Jones (12,6) potential, 

(15) 

The results are shown in Fig. 1 in terms of the reduced quantities, 

to* = tCve/r3m = l/B*, p* - pr3m/e, T *  =- k T / e  (16) 

where e/r 3 has the dimensions of pressure. 
The liquid range in Fig. 1 is the roughly triangular region enclosed by 

the critical isotherm, T~*, and the dashed curves. In this range, the curves 
are quite straight; even the critical isotherm (T~*) has only a small amount 
of curvature. Above the critical temperature the curves start off with the 
slope of the ideal-gas relation, 1/~c T= p, but eventually bend upward and 
become straight at the very high pressures corresponding to dense super- 
critical fluid. Notice that the scale in Fig. 1 extends to quite high pressures, 
since the critical pressure on this scale is only p~* ~ 0.2. The corresponding 
results for argon as calculated from the best available pair potential [-16] 
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Fig. 1. Reciprocal isothermal compressibility as a function of 
pressure at different temperatures for a Lennard-Jones (12,6) 
fluid. The reduced quantities used are defined in Eq. (16). 

are so similar to those shown in Fig. 1 that it is not worth displaying them 
separately. 

It is convenient to fit straight lines to the liquid isotherms in Fig. 1, 

1 1 
B *  - - ~- Cp* = B ~  + Cp* (17)  

where the slope C is the Moelwyn-Hughes number and 1/(~cr)~ _- Bo* is the 
(extrapolated) intercept at p * = 0 .  Both C and B* are functions of 
temperature, and the fitted values are given in Table I for both the (12,6) 
potential and the accurate Aziz-Slaman [16] argon potential. It happens 
that C varies linearly with reciprocal temperature for both potentials, as 
shown in Fig. 2. This is only an empirical observation on our part. The 
intercept and slope for the (12,6) potential are 3.253 and 3.417, respec- 
tively, and those for the Aziz-Slaman argon potential are 2.953 and 3.244. 
However, the temperature dependence of (~c~ * is more complicated, and 
Fig. 3 shows that B* vs. l/T* is noticeably curved. 

On integration, Eq. (17) yields the so-called Murnaghan equation 
[2, 7], given as Eq. (5) in Section 1. In his original paper, Murnaghan also 
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Table I. Reduced Bulk Modulus  as a Linear Function of Reduced Pressure: B* = B* + Cp* 

L e n n a r d q o n e s  (12-6) Ar 

T* C B~ T* C B~ 

0.70 8.150 18.23 0.60 8.392 18.45 
0.75 7.810 14.48 0.65 7.942 13.85 
0.80 7.518 11.48 0.70 7.571 10.41 
0.85 7.262 9.040 0.75 7.257 7.755 
0.90 7.040 7.021 0.80 6.991 5.662 
0.95 6.845 5.327 0.85 6.762 3.978 
1.00 6.667 3.902 0.90 6.556 2.618 
1.05 6,511 2.680 0.95 6.382 1.485 
1.10 6.368 1.636 1.00 6.221 0.5596 
1.15 6.232 0.7517 1.05 6.071 -0 .1904  
1.20 6.110 -0 .0109 t.122 a 5.876 -0 .9842 
1.25 5.994 - 0.6469 
1.304 ~ 5.877 - t. 1766 

a These are the critical temperatures as calculated from Eq. (13). 

i 1.5 
1/T* 

Fig. 2. Temperature dependence of the Moelwyn- 
Hughes number  C (the slopes of the liquid isotherms 
in Fig. 1) for a (12,6) liquid and for liquid argon. 
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considered modifying his equivalent of Eq. (17) by adding higher terms in 
p2, p3, etc. Although we could easily do this as an exercise in curve-fitting, 
we believe it is more sensible to work directly with the statistical-mechanical 
Eqs. (13) and (14), rather than bother with an extended Taylor expansion. 

4. C O M P A R I S O N  WITH E X P E R I M E N T  

We now wish to compare the theoretical results from Eqs. (13) and (14), 
as summarized by the simple linear Eq. (17), with computer simulation 
data for the (12,6) liquid [17, 18] and with experimental data for liquid 
argon [19]. This is best done with the equations in integrated form to 
avoid error amplification. It is convenient to use the secant bulk modulus 

defined in Eq. (6). Theoretical values of/~ can be numerically generated 
from Eq. (13) for the pressure or can be calculated analytically from the 
integrated form of Eq. (17), 

P-Po  (18) 
/ ~ -  1 - [1 + C~~ -~/c 

o is the compressibility at the reference pressure Po. where ~c T 
The results for the (12,6) liquid are shown in Fig. 4 in terms of the 

reduced quantities /~*-Br~m/e and p*-pr~m/~, for three temperatures, the 
highest of which ( T * =  1.35) is very close to the critical temperature. We 
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Fig, 4. Calculated and computer-simulated values 
of the reduced secant bulk modulus, B*, as a function 
of reduced pressure for a Lennard-Jones liquid at 
three temperatures. The points are the computer 
simulations [-17, 18] and the curves are calculated 
from Eq. (13). 

have used Eq. (13) to calculate/~* and have chosen the reference pressure 
to be p* = 0.15. For  consistency we have used the value of P0 from Eq. (13) 
throughout. The agreement is remarkably good. 

Similar results for liquid argon are shown in Fig. 5, with the reference 
pressure Po chosen to be the actual saturated vapor pressure at the 
specified temperature. The reference densities for the experimental points 
were taken to be the experimental densities of the saturated liquid. The 
curves were calculated from Eq. (13) using the Aziz-Slaman potential, with 
Po also calculated from Eq. (13). The agreement is fairly good, but there 
are some obvious systematic deviations; these may possibly be caused by 
many-body forces, which are absent in the (12,6) liquid. 

An interesting feature shown in both Fig. 4 and Fig. 5 is the nonlinearity 
of the /~  vs p isotherms. The original Tait equation takes these isotherms 
as linear, and Hayward [-1] has claimed that this is the best two-constant 
representation of the equation of state of liquids. He has also asserted that 
no two-constant equation is satisfactory at very high pressures. Both the 
points and the curves in Figs. 4 and 5 show that neither of these assertions 
is true. The statistical-mechanical result predicts distinct curvature of the 
secant bulk modulus B, in agreement wih experiment. 
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Fig.  5. Calculated and experimental values of the 
secant bulk modulus of liquid argon as a function of 
pressure at three temperatures. The points represent 
experimental data [19] and the curves are calculated 
from Eq. (13). 
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5. COMPARISON WITH LATTICE THEORIES 

Although lattice theories are now regarded as a rather unsuccessful 
chapter in the history of the theory of liquids [20], they do show some 
interesting features that are worth comparing with the present results. 
By attributing the modulus entirely to the intermolecular potential energy 
and assuming a Lennard-Jones (n, m) potential, Moelwyn-Hughes [4, J]  
obtained from lattice theory the relation, 

C=�89 (19) 

This should apply best at the lowest temperature available, since thermal 
kinetic energy is neglected. From Table I we find C ~ 8.15 near the triple 
point for the (12,6) potential; Eq. (19) predicts a value of 8.00, which is not 
a bad agreement. Perhaps more significantly, the lattice theory indicates 
that C depends only on T, which is indeed the case. 

Another connection to lattice theories, whether classical or quantum, 
comes from the relation between the characteristic vibrational frequency v 
and the Grfineisen number F, 

d l n v  F =  ~pV (20) 
d in  V •rCv 
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where c~p= V-I(~V/~T)p is the coefficient of thermal expansion and Cv is 
the constant-volume heat capacity. In the application of the lattice theories 
the Griineisen number is usually taken to be constant. It is never made 
clear in such theories why it must be so; the power law implied by Eq. (20) 
means there is no preferred macroscopic volume scale. It is only through 
a constant F that lattice theory can deliver any result for the coefficient of 
thermal expansion. 

Grfineisen [21] was the first to observe that the ratio ~p/Cv is 
approximately independent of T. The dimensionless number F, which now 
bears his name, has been observed to be essentially constant for solid 
metals from low to moderate temperatures and up to high pressures. This 
constancy also is found for liquid mercury; compilations of F for other 
liquids do not appear to be easily accessible. As with the Moelwyn-Hughes 
number the Griineisen number is constant for ideal gases, at least to the 
extent that Cv can be taken as constant. 

The expression for F can also be written in an equivalent form that 
emphasizes its dependence on the equation of state, 

1 Cvo+~Vo T(O2p/OT2)vdV 
r V(@IaT)  v 

(21) 

Thus only one value of Cv at each T is required. 
The thermal expansion coefficient is readily found from Eq. (13) to be 

I I  ( T d B 2 )  8bp(8-bp)  (Tdb~(lO-bP)] 
~ p = ~  1+ B2+ ~ - - b  p-i- ( 4_bp)  3 +16c~p2\ dTJ(4_bp)4 I 

I (16-2-bP)]-1 (22) 
x 1 + 2(B2 - :~)p + 32c~p (4 - bp)4j 

An equation of state alone cannot determine the temperature dependence 
of Cv. We have therefore used experimental values of Cv for liquid argon 
[19] but have calculated %, Kr, and V from the equation of state. The 
results are shown in Fig. 6 for liquid argon, where it is clear that F is not 
constant, but depends quite significantly on both temperature and pressure. 
Moelwyn-Hughes [4, 5] calculated F for the (n, m) potential by means of 
lattice theory and obtained, 

F= ~(n+m+ 1) (23) 

which yields F =  3.17 for the (12,6) potential. Figure 6 shows that this is 
likely to be only roughly true, and only at low temperatures and high 
pressures. 

840/12/5-7 
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Fig. 6. Griineisen number, F = - ~p V/~=rCv,  of liquid 
argon as a function of pressure at three temperatures. 
It is clear that F is far from constant. 

6 .  O T H E R  D I M E N S I O N A L I T I E S  

It is often informative to investigate how results depend on the 
dimensionality of space. This is easily done in the present case because the 
statistical-mechanical Eq. (7) for the p - V - T  relation has been generalized 
to d dimensions [22]. The form of Eq. (7) remains unaltered, but Eq. (12) 
for the contact pair distribution function g(r/) becomes 

1 - 7~ /  ( 2 4 )  
g(q) - (1 -- r/) d 

where rl =bp/2 a-1 is the packing fraction in d dimensions, and 7 is a 
known constant that depends on d. The definitions of the parameters 
B2(T), or(T), and b(T) are also generalized in a straightforward way [22], 
but there is no need to write down the expressions here. 

We have calculated ~c r and examined plots of 1/~c* vs p* for Lennard- 
Jones (12,6) molecules in spaces of 1, 2, 4, and 5 dimensions. Except that 
the numerical scales increase with increasing d, the results resemble Fig. 1 
for d =  3 in that the liquid isotherms (T* < T*) are well approximated by 
straight lines. If anything, a linear approximation of the liquid isotherms 
becomes better as d increases. Thus the present results seem to be valid in 
all dimensions. 
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7. CONCLUSIONS 

The most important conclusion to be drawn from the present results 
is that the nearly linear pressure dependence of the bulk modulus of a 
liquid can be given a strong basis in statistical mechanics. Thus the 
Murnaghan equation turns out to have the best theoretical pedigree of all 
the empirical equations of state for liquids. 

The present results also show to what extent the results for liquids can 
be extended to supercritical fluids. From Fig. 1 we can see that the super- 
critical isotherms do not approach liquid-like behavior until rather high 
pressures are reached--roughly p * ~  10, or pressures about 50 times the 
critical pressure. 

The Moelwyn-Hughes number C is indeed found to be a function of 
temperature, almost independent of pressure. However, the Griineisen 
"constant" F is found to depend rather strongly on both T and p. Thus C 
is a useful quantity for compressed liquids, whereas F is not. 

There are, of course, a number of limitations to the present theoretical 
results. We have ignored the effects of nonspherical intermolecular forces 
and of possible many-body forces and considered only pairwise additive 
central forces. However, recent work on the theory of molecular fluids [9] 
gives the prospect that at least some of these restrictions can be eased and 
the results applied to real molecular fluids. 

If the theory can indeed be extended to molecular liquids, the practical 
question arises as to how to find scale factors corresponding to ~ and rm, 
in order that the theory can have real predictive power. The present 
statistical-mechanical theory would take e and r m from experimental values 
of B2(T), the second virial coefficient of the vapor [8]. But B z ( T  ) would 
not be known experimentally for many compressed liquids of interest, and 
another method for finding suitable scale factors would be needed. 

In summary, the present work shows how the equation of state of 
compressed liquids can be given a statistical-mechanical basis, but further 
work is needed for application to real molecular liquids. 
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